What is NAD?
NAD was discovered in 1906, with it’s importance slowly discovered over the next 120 years. Even in 1930, Euler-Chelpin, in his Nobel Prize speech, referred to as “one of the most widespread and biologically most important activators within the plant and animal world.”
NAD is constantly being naturally produced and recycled by your body keeping levels as high as possible, but it is also boosted from the food we eat in various forms of Vitamin B3, including Niacin, Nicotinamide, Nicotinamide Mononucleotide, and Nicotinamide Riboside.
How it works
For cellular respiration, the extraction of energy from food molecules is what is known as oxidation. Oxidation means the removal of hydrogen, which is equal to 2 high energy electrons, from the food molecule.
The importance of NAD lies here. NAD acts as the transporter, or carrier, of the hydrogen in this process, and exists in two forms, NAD+ and NADH, dependent on whether it is carrying hydrogen, or it is not.
NADH then transports and donates the electrons to cells, enzymes and proteins that need energy vital for life! With each of these transfers of electrons, through the chemical reactions that occur, cellular energy – ATP is generated!
Once NADH has donated and no longer has its hydrogen atom, it transforms back to NAD+ and begins the cycle again
Powering the Mitochondria
There are three stages to the creation of cellular energy (ATP) by cellular respiration however the most, by far, is produced through NADH delivering electrons directly to inner membrane of a cell’s mitochondria where they are transferred to a structure called the electron transport chain.
When there are less NAD transporters, fewer nutrients get processed by the mitochondria, leading to lower ATP production.
The electron transport chain is a collection of carrier proteins. Carrier proteins are important molecules which facilitate the movement of hydrogen ions and electrons across the inner membrane, between the matrix and intermembrane space.
The electrons delivered by NADH are used to create energy for the carrier proteins in order to “pump” hydrogen ions from the center of the mitochondria (the matrix), across the inner membrane to the intermembrane space.
As the mitochondria requires a relatively equal amount of hydrogen ions on either side of the inner membrane, the hydrogen ions are then natural pumps back through.
It is the flow of these positive charges back across the inner membrane through a protein called ATP synthase that produces.
Enzymes - vital for life
They are vital for life and serve a wide range of important functions in the body. They break down larger molecules in to smaller ones, and combine other molecules to make a new ones. They are responsible for creating the energy and molecules your body needs to help with digestion, metabolism, cell renewal and growth. The ATP synthase, discussed above, is an enzyme critical for creating the cellular energy – ATP.
Sirtuins - Protectors of the Genome
There are 7 sirtuins in total (SIRT1 through to SIRT7). We are only beginning to understand the full extent of their roles and responsibilities. Here are some of their potential roles from published journals. *This is only a very small proportion of the information available.*
SIRT1: Regulate inflammation and metabolism (click here)
SIRT2: Tumor Suppressor (click here) and protects neural cells from oxidative stress (click here)
SIRT3: Eliminate reactive oxygen species and to prevent the development of cancerous cells (click here)
SIRT4 Tumor Suppressor (click here) and cellular energy metabolism (click here)
SIRT5: Regulate urea cycle (click here) and energy metabolism (click here)
SIRT6: Telomere maintenance (click here) and DNA repair (click here)
SIRT7: Gene expression and cellular metabolism (click here)
PARPs
Their main role is to detect and initiate an immediate cellular response to metabolic, chemical, or radiation-induced single-strand DNA breaks.
Once the PARP has detected DNA damage it binds to it, and signals the DNA repair pathways to direct them to the site and carry out the repair.
Watch the excellent video below of Prof. Steve Jackson, the Head of Cancer Research UK, describe the function of PARPs.
NAD is essential for Sirtuin and PARP activation
Researchers now believe that when NAD levels are properly restored, sirtuins and PARPs are activated, leading to significant health benefits.